
Heaps and Polling Data

CS 106 - Introduction to Data Structures

Lab 6 - one week

For this assignment, you’ll continue your previous investigation of Democratic
primary polling data by determining which candidate is currently in the lead.

1 Implementing a Heap

You should start by implementing the given PriorityQueue interface as a LinkedHeap
so that generic objects that implement the compareTo function from the Compa-
rable interface can be inserted into your priority queue.

Requirements:

1. Implement the PriorityQueue interface as a maximum heap. You should ex-
tend your previous implementation of the LinkedBinaryTree in LinkedHeap.
As in the previous lab, you should not use any for or while loops in your
implementation.

2. Your implementation should be properly encapsulated, i.e. no implementa-
tion details should be made visible outside of the LinkedHeap or LinkedBi-
naryTree classes. You may modify your LinkedBinaryTree implementation
from the previous lab if necessary, for example, you may find it useful to
make the Node class protected instead of private.

3. You should use the compareTo method of the given element to determine
which values are greater or less within the priority queue. Insertion of can-
didate results that are already in the tree should update the current element
in the priority queue while making any updates necessary to guarantee the
heap property. When you put your polling data into the tree this will be
equivalent to updating the poll numbers for a candidate. Since this heap will
be used to store polling data, you should be implementing this as a maximum
heap, so that we will be able to easily retrieve the current top candidate. You

1



should make sure that compareTo considers the candidates’ last names when
determining equality, while considering the polling results when determining
whether the result is more or less than another candidate’s results. Note
that you will need to change your implementation of compareTo from the
previous lab.

4. Your implementation of remove should ensure the heap property is main-
tained. If the given element can not be found in the heap (based on the use
of the compareTo method), this method should return false.

Hints:

1. insert: Items should be inserted into the heap by inserting into a non-
perfect subtree. You may find it useful to create a method within your node
class to determine if the subtree rooted at that node is perfect. Recall that
in a perfect subtree the size of the subtree size = 2height+1 − 1, thus, you
may also find it useful to keep track of the size and height of each subtree.
Once you determine where to insert the new node and insert it, your insert
method should then call heapifyUp (see below) to fix the heap property.

2. remove: In order to remove the given element from the heap, you’ll need
to first find the node containing that element. You can do this by making
a helper function that recursively looks at all nodes of the tree and returns
the node where the element is equal to the given one. Once you have the
Node object to remove, you’ll find the “last” node in the heap (i.e., the one
in the position that should be removed to maintain the heap shape), swap
that with the node to remove, and then remove the node. Finally, use the
heapifyDown helper method you should write (see below) to fix the heap
property of the swapped node.

3. heapifyUp: Create a void heapifyUp(Node node) method that recursively
swaps the given node up the tree and is called on a node after it has been
inserted in the bottom level of the tree or swapped to a part of the tree where
it violates the heap property.

4. heapifyDown: Create a void heapifyDown(Node node) method that recur-
sively swaps the given node with the larger of the two children down the tree
until the heap property is satisfied.

5. swap: You may find it useful to have a helper method:
private void swap(Node nodeA, Node nodeB)

that does the work of swapping two nodes as well as all of their associated
links that can be called from both heapifyUp and heapifyDown. This method
should:

2



(a) Store all of the relevant original information for each of the nodes to
swap: the left child, right child, parent, height, and size.

(b) Set each of the above pieces of information to its swapped value for both
nodes. Note that in order to do this, you’ll need to have some way to
identify whether a node was a left or right child of its parent. You could
do this by modifying your Node class to keep track of this information
(in which case you’ll also need to be careful to set that information
correctly within swap) or by checking equality using compareTo.

(c) Be sure to also set the relevant left child, right child, and parent pointers
for the parent of the given nodes and the children of the given nodes.

2 Command Line Input

As in the previous assignment, you will take filenames that store polling data as
arguments to your main method. Your resulting heap should contain the polling
data for each candidate from the most recent date for which there is data from the
files given on the command line. The resulting heap should be ordered so that the
candidate with the highest percentage of voters in the most recent poll is at the
top of the heap.

You will add an optional argument to remove some candidates from consider-
ation. The full set of arguments you should handle will look like this:
-r Biden Bloomberg dempres_20190210_1.csv dempres_20190210_2.csv

but it should remain valid for the arguments to only contain files like this:
dempres_20190210_1.csv dempres_20190210_2.csv

In the first case above you would print out the tree and top candidate who is not
Biden or Bloomberg based on the polling data in the given files.

Requirements:

1. Take filename input from the command line into the main method of your
Main.java. You may be given multiple filenames. Print out the tree (in the
same format as for the last lab) after each file is inserted, followed by the
top candidate:

Top Candidate:

Joseph R. Biden Jr.:29.0

The above printout should happen once after all polling data has been in-
serted and should not change the heap.

3



2. Process the optional −r flag to remove candidates. This should be done so
that the top candidate does not include any removed candidates. However
you should only perform these remove operations once. One suggested order
for handing this flag is to:

(a) insert all the polling data (printing out the heap after each file is in-
serted, as in the previous lab),

(b) remove the candidates, and

(c) show the top candidate.

In other words, it is expected that when you print out the heap it will
include the candidates that will later be removed. Recall from above that
your compareTo method of your polling data object should test equality
based solely on the candidate’s last name - this will be useful for removal of
candidates.

3. As in the previous assignment, you should print out the heap after each
polling file is inserted.

3 Extra Credit

All extra credit should only be done after successful completion of all of the base
requirements for this assignment. The number of points awarded for extra credit
will be smaller than those for completion of the base requirements and the extra
credit is designed to be harder than those basic requirements as well. You may
choose which of the extra credit options below to pursue and can receive credit
for some and not others where that makes sense. If you implement any of these
options, identify the work that you did in the README file.

While a heap is usually required only to return the maximum (or minimum)
element, since this will be used to store polling data, it may be interesting to us
to retrieve the top few candidates. Most extra credit options below relate to this
idea.

1. Add a method ArrayList<E> peekTopN(int n) that returns the top ele-
ments of the heap in order. The heap should not be any different after the
method was called than it was before the method was called, i.e., this is
similar to peek in that it does not remove the top element. You should not
implement this method by removing and then reinserting each element, as
this has the potential to modify the heap.

(a) Describe your design of the peekTopN method in your README file.

4



(b) Add an option for the users to provide a flag that will run your peek-
TopN method to determine and print out the top N candidates. The
resulting arguments you should handle will look like this:
-n 5 dempres_20190210_1.csv dempres_20190210_2.csv

In the above case, the top 5 candidates would be displayed. This should
work seamlessly with the -r flag such that the top 5 candidates who
have not been removed are displayed. The display format should be the
same as for the Top Candidate, but with multiple lines below.

2. Handle tied ranks appropriately for the peekTopN method. For example, in
the case where there are two candidates who are tied for the best, peekTopN
for n = 1 should print out both of those candidates.

3. Given a detailed big-Oh analysis for the peekTopN method in your README.

4. Implement the heap interface using an array or ArrayList in a new ArrayHeap

file.

5


	Implementing a Heap
	Command Line Input
	Extra Credit

